【BZOJ 4589】Hard Nim

相关链接

题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4589

解题报告

我们考虑用SG函数来暴力DP
显然可以用FWT来优化多项式快速幂
总的时间复杂度:$O(n \log n)$

Code

#include<bits/stdc++.h>
#define LL long long
using namespace std;

const int N = 100009; 
const int MOD = 1000000007;
const int REV = 500000004;

bool vis[N];
int arr[N];

inline int read() {
	char c = getchar(); int ret = 0, f = 1;
	for (; c < '0' || c > '9'; f = c == '-'? -1: 1, c = getchar());
	for (; '0' <= c && c <= '9'; ret = ret * 10 + c - '0', c = getchar());
	return ret * f;
}

inline int Pow(int w, int t) {
	int ret = 1;
	for (; t; t >>= 1, w = (LL)w * w % MOD) {
		if (t & 1) {
			ret = (LL)ret * w % MOD;
		}
	}
	return ret;
}

inline void FWT(int *a, int len, int opt = 1) {
	for (int d = 1; d < len; d <<= 1) {
		for (int i = 0; i < len; i += d << 1) {
			for (int j = 0; j < d; j++) {
				int t1 = a[i + j], t2 = a[i + j + d];
				if (opt == 1) {
					a[i + j] = (t1 + t2) % MOD;
					a[i + j + d] = (t1 - t2) % MOD;
				} else {
					a[i + j] = (LL)(t1 + t2) * REV % MOD;
					a[i + j + d] = (LL)(t1 - t2) * REV % MOD;
				}
			}
		}
	}
}

int main() {
	for (int n, m; ~scanf("%d %d", &n, &m); ) {
		memset(arr, 0, sizeof(arr));
		for (int i = 2; i <= m; i++) {
			if (!vis[i]) {
				arr[i] = 1;
				for (int j = i << 1; 0 <= j && j <= m; j += i) {
					vis[j] = 1;
				}
			}
		}
		int len = 1; 
		for (; len <= m; len <<= 1);
		FWT(arr, len);
		for (int i = 0; i < len; i++) {
			arr[i] = Pow(arr[i], n);
		}
		FWT(arr, len, -1);
		printf("%d\n", (arr[0] + MOD) % MOD);
	}
	return 0;
}

【BZOJ 4599】[JLOI2016] 成绩比较

相关链接

题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4559
神犇题解:http://blog.lightning34.cn/?p=286

解题报告

仍然是广义容斥原理
可以推出$\alpha(x)={{n-1}\choose{x}} \prod\limits_{i=1}^{m}{{{n-1-x}\choose{R_i-1}}\sum\limits_{j=1}^{U_i}{(U_i-j)^{R_i-1}j^{n-R_i}}}$
我们发现唯一的瓶颈就是求$f(i)=\sum\limits_{j=1}^{U_i}{(U_i-j)^{R_i-1}j^{n-R_i}}$
但我们稍加观察不难发现$f(i)$是一个$n$次多项式,于是我们可以用拉格朗日插值来求解
于是总的时间复杂度:$O(mn^2)$

Code

这份代码是$O(mn^2 \log 10^9+7)$的
实现得精细一点就可以把$\log$去掉

#include<bits/stdc++.h>
#define LL long long
using namespace std;

const int N = 200;
const int MOD = 1000000007;

int n,m,K,r[N],u[N],f[N],g[N],h[N],alpha[N],C[N][N]; 

inline int read() {
	char c=getchar(); int f=1,ret=0;
	while (c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
	while (c<='9'&&c>='0') {ret=ret*10+c-'0';c=getchar();}
	return ret * f;
} 

inline int Pow(int w, int t) {
	int ret = 1;
	for (;t;t>>=1,w=(LL)w*w%MOD) {
		if (t & 1) {
			ret = (LL)ret * w % MOD;
		} 
	}
	return ret;
}

inline int LagrangePolynomial(int x, int len, int *ff, int *xx) {
	int ret = 0;
	for (int i=1;i<=len;i++) {
		int tmp = ff[i];
		for (int j=1;j<=len;j++) {
			if (i == j) continue;
			tmp = (LL)tmp * (x - xx[j]) % MOD;
			tmp = (LL)tmp * Pow(xx[i] - xx[j], MOD-2) % MOD;
		}
		ret = (ret + tmp) % MOD;
	}
	return (ret + MOD) % MOD;
} 

int main() {
	n = read(); m = read(); K = read();
	for (int i=1;i<=m;i++) {
		u[i] = read();
	}
	for (int i=1;i<=m;i++) {
		r[i] = read();
	}
	//预处理组合数 
	C[0][0] = 1;
	for (int i=1;i<=n;i++) {
		C[i][0] = 1;
		for (int j=1;j<=i;j++) {
			C[i][j] = (C[i-1][j-1] + C[i-1][j]) % MOD;
		}
	}
	//拉格朗日插值
	for (int w=1;w<=m;w++) {
		for (int i=1;i<=n+1;i++) {
			f[i] = 0; h[i] = i;
			for (int j=1;j<=i;j++) {
				f[i] = (f[i] + (LL)Pow(i-j, r[w]-1) * Pow(j, n-r[w])) % MOD;
			}
		}  
		g[w] = LagrangePolynomial(u[w], n+1, f, h);
	}
	//广义容斥原理 
	int ans = 0;
	for (int i=K,t=1;i<=n;i++,t*=-1) {
		alpha[i] = C[n-1][i];
		for (int j=1;j<=m;j++) {
			alpha[i] = (LL)alpha[i] * C[n-1-i][r[j]-1] % MOD * g[j] % MOD;
		}
		ans = (ans + t * (LL)C[i][K] * alpha[i]) % MOD;
	}
	printf("%d\n",(ans+MOD)%MOD);
	return 0;
}

【BZOJ 4318】OSU!

相关链接

题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4318
神犇题解:https://oi.men.ci/bzoj-4318/

解题报告

设$p_i$为第$i$个操作成功的概率
设$E_{(i,x^3)}$为以第$i$个位置为结尾,$($极长$1$的长度$x)^3$的期望
$E_{(i,x^2)},E_{(i,x)}$分别表示$x^2,x$的期望

那么根据全期望公式,我们有如下结论:

$E_{(i,x^3)}=p_i \times E_{(i-1,(x+1)^3)}$
$E_{(i,x^2)}=p_i \times E_{(i-1,(x+1)^2)}$
$E_{(i,x)}=p_i \times (E_{(i-1,x)} + 1)$

不难发现只有第三个式子可以直接算
但我们还知道一个东西叫期望的线性,于是我们可以将前两个式子化为:

$E_{(i,x^3)}=p_i \times (E_{(i-1,x^3)} + 3E_{(i-1,x^2)} + 3E_{(i-1,x)} + 1)$
$E_{(i,x^2)}=p_i \times (E_{(i-1,x^2)} + 2E_{(i-1,x)} + 1)$

然后就可以直接维护,然后再根据期望的线性加入答案就可以辣!
时间复杂度:$O(n)$

另外,似乎直接算贡献也可以?
可以参考:http://blog.csdn.net/PoPoQQQ/article/details/49512533

Code

#include<bits/stdc++.h>
#define LL long long
using namespace std;

inline int read() {
	char c=getchar(); int f=1,ret=0;
	while (c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
	while (c<='9'&&c>='0') {ret=ret*10+c-'0';c=getchar();}
	return ret * f;
}

int main() {
	int n=read(); 
	double e1=0,e2=0,e3=0,ans=0,p;
	for (int i=1;i<=n;i++) {
		scanf("%lf",&p);
		ans += e3 * (1 - p);
		e3 = p * (e3 + 3 * e2 + 3 * e1 + 1);
		e2 = p * (e2 + 2 * e1 + 1);
		e1 = p * (e1 + 1);
	} 
	printf("%.1lf\n",ans+e3);
	return 0;
}

【HDU 5716】带可选字符的多字符串匹配

相关链接

题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=5716
神犇题解:http://www.cnblogs.com/clrs97/p/5985648.html

解题报告

这货$KMP$是不可做的,于是考虑用$bitset$来优化暴力
定义$v[i][j]$为文本串第$i$位是否能匹配模式串第$j$位
定义$f[i][j]$为第$i$种字符能否匹配模式串第$j$位
那么$v[i][j] = v[i – 1][j – 1] \ and \ f[s[i]][j]$
然后数组第二维用$bitset$优化,时间复杂度:$O(\frac{nm}{64})$

Code

#include<bits/stdc++.h>
#define LL long long
using namespace std;

const int N = 2000009;
const int M = 600;
const int SGZ = 100;

char s[N], sgz[SGZ];
bitset<M> v, f[SGZ];

inline int read() {
	char c = getchar(); int ret = 0, f = 1;
	for (; c < '0' || c > '9'; f = c == '-'? -1: 1, c = getchar());
	for (; '0' <= c && c <= '9'; ret = ret * 10 + c - '0', c = getchar());
	return ret * f;
}

inline int id(char c) {
	if ('0' <= c && c <= '9') {
		return c - '0' + 1;
	} else if ('a' <= c && c <= 'z') {
		return c - 'a' + 11;
	} else if ('A' <= c && c <= 'Z'){
		return c - 'A' + 37;
	} else {
		return 0;
	}
}

int main() {
	while (gets(s + 1)) {
		int n = strlen(s + 1), m = read();
		v.reset();
		for (int i = 0; i < SGZ; i++) {
			f[i].reset();
		}
		for (int i = 1; i <= m; i++) {
			int SGZ = read();
			scanf("%s", sgz + 1);
			for (int j = 1; j <= SGZ; j++) {
				f[id(sgz[j])][i] = 1;
			}
		}
		bool CantMatch = 1;
		for (int i = 1; i <= n; i++) {
			v = (v << 1) & f[id(s[i])];
			v[1] = f[id(s[i])][1];
			if (v[m]) {
				printf("%d\n", i - m + 1);
				CantMatch = 0;
			}
		}
		if (CantMatch) {
			puts("NULL");
		}
		getchar();
	}
	return 0;
}

—————————— UPD 2017.7.3 ———————————
这题的简单拓展:http://www.lydsy.com/JudgeOnline/problem.php?id=4924

【Codeforces 819B】Mister B and PR Shifts

相关链接

题目传送门:http://codeforces.com/contest/819/problem/B

解题报告

这题是今年SCOI D2T1的一部分

具体的做法就是如果$i$变成$i+1$,那么有多少$|p_i – i|$会增加和减少
对于每个$|p_i – i|$,“从增加变到减少 或 从减少变到增加” 只会进行一次
于是总的时间复杂度就是:$O(n)$的

Code

#include<bits/stdc++.h>
#define LL long long
using namespace std;

const int N = 1000009;

int n, p[N], chg[N], delta[2];

inline int read() {
	char c = getchar(); int ret = 0, f = 1;
	for (; c < '0' || c > '9'; f = c == '-'? -1: 1, c = getchar());
	for (; '0' <= c && c <= '9'; ret = ret * 10 + c - '0', c = getchar());
	return ret * f;
}

int main() {
	n = read();
	LL cur = 0, ans, pos = 0;
	for (int i = 1; i <= n; i++) {
		p[i] = read();
		cur += abs(p[i] - i);
		delta[p[i] > i]++; 
		if (p[i] > i) {
			++chg[p[i] - i]; 
		} else {
			++chg[n - i + p[i]]; 
		}
		--chg[n - i + 1]; 
	}
	ans = cur;
	for (int i = 1; i < n; i++) {
		cur += delta[0] - delta[1];
		cur += abs(p[n - i + 1] - 1) - abs(p[n - i + 1] - n - 1);
		if (cur < ans) {
			ans = cur;
			pos = i;
		}
		delta[1] -= chg[i];
		delta[0] += chg[i];
	}
	cout<<ans<<' '<<pos<<endl;
	return 0;
}

【日常小测】航海舰队

相关链接

题目传送门:http://oi.cyo.ng/wp-content/uploads/2017/06/claris_contest_day1-statements.pdf
官方题解:http://oi.cyo.ng/wp-content/uploads/2017/06/claris_contest_day1-solutions.pdf

解题报告

之前在BZOJ上看过这道题,然后当时嫌麻烦没有写
今天刚好考到,然后就被细节给搞死了_(:з」∠)_

一句话题解就是:用FFT做矩阵匹配
详细一点的话,大概就是:

先用FFT做一遍0/1矩阵匹配,求出能放阵型的位置
然后BFS出能到达的位置
最后再做一遍FFT求出每个点被覆盖了多少次

Code

#include<bits/stdc++.h>
#define LL long long
#define CP complex<double>
using namespace std;

const int N = 709;
const int M = 5000000;
const double EPS = 0.5;
const double PI = acos(-1);

char mp[N][N];
int n, m, vis[M], sfe[M];
int dx[] = {1, 0, -1, 0}, dy[] = {0, 1, 0, -1};
CP a[M], b[M], c[M];

inline void FFT(CP *arr, int len, int ty) {
	static int pos[M], init = 0;
	if (init != len) {
		for (int i = 1; i < len; ++i) {
			pos[i] = (pos[i >> 1] >> 1) | ((i & 1)? (len >> 1): 0); 
		}
		init = len;
	}
	for (int i = 0; i < len; i++) {
		if (pos[i] < i) {
			swap(arr[i], arr[pos[i]]);
		}
	}
	for (int i = 1; i < len; i <<= 1) {
		CP wn(cos(PI / i), sin(PI / i) * ty);
		for (int j = 0; j < len; j += i + i) {
			CP w(1, 0);
			for (int k = 0; k < i; k++, w *= wn) {
				CP tmp = arr[j + i + k] * w;
				arr[j + i + k] = arr[j + k] - tmp;
				arr[j + k] = arr[j + k] + tmp;
			}
		}
	}
	if (ty == -1) {
		for (int i = 0; i < len; i++) {
			arr[i] /= len;
		}
	}
}

inline void BFS(int sx, int sy, int lx, int ly) {
	vis[sy * n + sx] = 1;
	queue<pair<int, int> > que;
	for (que.push(make_pair(sx, sy)); !que.empty(); que.pop()) {
		int x = que.front().first;
		int y = que.front().second;
		for (int i = 0; i < 4; i++) {
			int nx = x + dx[i];
			int ny = y + dy[i];
			if (0 <= nx && nx + lx - 1 < n && 0 <= ny && ny + ly - 1 < m && sfe[ny * n + nx] && !vis[ny * n + nx]) {
				que.push(make_pair(nx, ny));
				vis[ny * n + nx] = 1;
			}
		}
	}
} 

int main() {
	freopen("sailing.in", "r", stdin);
	freopen("sailing.out", "w", stdout);
	cin >> m >> n;
	int mnx = n, mny = m, mxx = 0, mxy = 0; 
	for (int j = 0; j < m; j++) {
		scanf("%s", mp[j]);
		for (int i = 0; i < n; i++) {
			if (mp[j][i] == 'o') {
				mnx = min(i, mnx);
				mxx = max(i, mxx);
				mny = min(j, mny);
				mxy = max(j, mxy);
			}
		}
	}
	for (int j = 0; j < m; ++j) {
		for (int i = 0; i < n; ++i) {
			if (mp[j][i] == 'o') {
				b[(j - mny) * n + i - mnx] = CP(1, 0);
			} else if (mp[j][i] == '#') {
				a[j * n + i] = CP(1, 0);
			}
		}
	}
	int cur = n * m, len = 1;
	for (; len < cur * 2; len <<= 1);
	for (int l = 0, r = cur - 1; l < r; ++l, --r) {
		swap(b[l], b[r]);
	}
	FFT(a, len, 1);
	FFT(b, len, 1);
	for (int i = 0; i < len; i++) {
		a[i] *= b[i];
	}
	FFT(a, len, -1);
	for (int i = 0; i < cur; i++) {
		if (a[i + cur - 1].real() < EPS) {
			sfe[i] = 1;
		}
	}
	BFS(mnx, mny, mxx - mnx + 1, mxy - mny + 1); 
	memset(b, 0, sizeof(b));
	for (int j = 0; j < m; j++) {
		for (int i = 0; i < n; i++) {
			c[j * n + i] = vis[j * n + i]? CP(1, 0): CP(0, 0);
			b[(j - mny) * n + i - mnx] = mp[j][i] == 'o'? CP(1, 0): CP(0, 0);
		}
	}
	FFT(c, len, 1);
	FFT(b, len, 1);
	for (int i = 0; i < len; i++) {
		c[i] *= b[i];
	}
	FFT(c, len, -1);
	int ans = 0;
	for (int i = 0; i < cur; i++) {
		ans += c[i].real() > EPS; 
	}
	printf("%d\n", ans);
	return 0;
}

—————————— UPD 2017.6.30 ——————————
B站题号:4624

【Codeforces 815C】Karen and Supermarket

相关链接

题目传送门:http://codeforces.com/contest/815/problem/C

解题报告

这题就是考察树DP优化复杂度的一种常用技巧
考虑暴力DP的话,复杂度是:$O(n^3)$的
但如果在父亲结点那里记录一个儿子节点的子树大小的前缀和,复杂度就变成了$O(n^2)$
证明也很简单,对于任意两个结点,只会在$LCA$处产生$1$的花费

Code

#include<bits/stdc++.h>
#define LL long long
using namespace std;

const int N = 5009;
const LL INF = 1e14;

int n, head[N], nxt[N], to[N], sz[N];
LL b, f[N][N], g[N][N], c[N], d[N], t1[N], t2[N];

inline int read() {
	char c=getchar(); int ret=0,f=1;
	while (c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
	while (c<='9'&&c>='0') {ret=ret*10+c-'0';c=getchar();}
	return ret*f;
}

inline void AddEdge(int u, int v) {
	static int E = 1;
	to[++E] = v; nxt[E] = head[u]; head[u] = E;	
}

inline void relax(LL &a, LL b) {
	a = a > b? b: a;
}

inline void DFS(int w) {
	f[w][0] = g[w][0] = 0;
	for (int i = head[w]; i; i = nxt[i]) {
		DFS(to[i]);
		memcpy(t1, f[w], sizeof(t1));
		memcpy(t2, g[w], sizeof(t2));
		for (int j = 0; j <= sz[w]; j++) {
			for (int k = 0; k <= sz[to[i]]; k++) {
				relax(f[w][j + k], t1[j] + f[to[i]][k]);
				relax(g[w][j + k], t2[j] + g[to[i]][k]);
			}
		}
		sz[w] += sz[to[i]];
	}
	sz[w]++;
	for (int i = sz[w] - 1; ~i; i--) {
		g[w][i + 1] = g[w][i] + c[w] - d[w];
		relax(f[w][i + 1], f[w][i] + c[w]);
		relax(g[w][i + 1], f[w][i + 1]);
	}
	g[w][0] = 0;
}

int main() {
	n = read(); b = read();
	c[1] = read(); d[1] = read();
	for (int i = 2; i <= n; i++) {
		c[i] = read(); d[i] = read();
		AddEdge(read(), i);
	}
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) {
			f[i][j] = g[i][j] = INF;
		}
	}
	DFS(1);
	for (int i = n; ~i; i--) {
		if (g[1][i] <= b) {
			printf("%d\n", i);
			exit(0);
		}
	}
	return 0;
}

【Codeforces 817E】Choosing The Commander

相关链接

题目传送门:http://codeforces.com/contest/817/problem/E

解题报告

考虑异或之后小于的话
把士兵插入到Trie树里面,然后走一条链即可
时间复杂度:$O(n \log 10^8)$

Code

#include<bits/stdc++.h>
#define LL long long
using namespace std;

const int N = 100009 * 32;

inline int read() {
	char c = getchar();
	int ret = 0, f = 1;
	while (c < '0' || c > '9') {
		f = c == '-'? -1: 1;
		c = getchar();
	}
	while ('0' <= c && c <= '9') {
		ret = ret * 10 + c - '0';
		c = getchar();
	}
	return ret * f;
}

class Trie{
int root, cnt;
struct Node{
	int sum, ch[2];
}p[N];
public:
	inline void modify(int v, int d) {
		modify(root, 30, v, d);
	}
	inline int query(int buf, int lim) {
		return query(root, 30, buf, lim);
	}
private:
	inline void modify(int &w, int t, int v, int d) {
		w = w? w: ++cnt;
		p[w].sum += d;
		if (t >= 0) {
			modify(p[w].ch[(v >> t) & 1], t - 1, v, d);
		}
	}
	inline int query(int w, int t, int buf, int lim) {
		if (!w || t == -1) {
			return 0;
		} else {
			int ret = 0, t2 = (buf >> t) & 1, t1 = (lim >> t) & 1;
			if (t1) {
				ret += p[p[w].ch[t2]].sum;
				ret += query(p[w].ch[t2 ^ 1], t - 1, buf, lim);
			} else {
				ret += query(p[w].ch[t2], t - 1, buf, lim);
			}
			return ret;
		}
	}
}trie;

int main() {
	int n = read();
	for (int i = 1; i <= n; i++) {
		int ty = read();
		if (ty == 1) {
			trie.modify(read(), 1);
		} else if (ty == 2) {
			trie.modify(read(), -1);
		} else {
			int p = read(), l = read();
			printf("%d\n", trie.query(p, l));
		}
	}
	return 0;
}

【日常小测】魔术卡

相关链接

题目传送门:http://oi.cyo.ng/wp-content/uploads/2017/06/20170614-statement.pdf

题目大意

给你$m(m \le 10^3)$种,第$i$种有$a_i$张,共$n(n = \sum\limits_{i = 1}^{m}{a_i} \le 5000)$张卡
现在把所有卡片排成一排,定义相邻两个卡片颜色相同为一个魔术对
询问恰好有$k$个魔术对的本质不同的排列方式有多少种,对$998244353$取模
定义本质不同为:至少有一位上的颜色不同

解题报告

一看就需要套一个广义容斥原理
于是问题变为求“至少有$x$个魔术对的方案数”

于是我们可以钦定第$i$种卡片组成了$j$个魔术对
然后用一个$O(n^2)$的$DP$来求出至少有$x$个魔术对的方案数

为了方便去重,我们先假设相同颜色的卡片有编号,最后再依次用阶乘除掉
考试的时候就是这里没有处理好,想的是钦定的时候直接去重,但这样块与块之间的重复就搞不了,于是$GG$了

Code

#include<bits/stdc++.h>
#define LL long long
using namespace std;

const int N = 5009;
const int MOD = 998244353;

int n, m, K, a[N], pw[N], inv[N], f[N][N], C[N][N];

inline int read() {
	char c = getchar();
	int ret = 0, f = 1;
	while (c < '0' || c > '9') {
		f = c == '-'? -1: 1;
		c = getchar();
	}
	while ('0' <= c && c <= '9') {
		ret = ret * 10 + c - '0';
		c = getchar();
	}
	return ret * f;
}

inline int Pow(int w, int t) {
	int ret = 1;
	for (; t; t >>= 1, w = (LL)w * w % MOD) {
		if (t & 1) {
			ret = (LL)ret * w % MOD;
		}
	}
	return ret;
}

int main() {
	freopen("magic.in", "r", stdin);
	freopen("magic.out", "w", stdout);
	m = read(); n = read(); K = read();
	for (int i = 1; i <= m; i++) {
		a[i] = read();
	}
	C[0][0] = 1;
	for (int i = 1; i <= n; i++) {
		C[i][0] = 1;
		for (int j = 1; j <= n; j++) {
			C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % MOD;
		}
	}
	pw[0] = inv[0] = 1;
	for (int i = 1; i <= n; i++) {
		pw[i] = (LL)pw[i - 1] * i % MOD;
		inv[i] = Pow(pw[i], MOD - 2);
	}
	f[0][0] = 1;
	for (int i = 1, pre_sum = 0; i <= m; i++) {
		pre_sum += a[i] - 1;
		for (int j = 0; j <= pre_sum; j++) {
			for (int k = min(a[i] - 1, j); ~k; k--) {
				f[i][j] = (f[i][j] + (LL)f[i - 1][j - k] * C[a[i]][k] % MOD * pw[a[i] - 1] % MOD * inv[a[i] - 1 - k]) % MOD;
			}
		} 
	}
	int ans = 0;
	for (int i = K, ff = 1; i < n; i++, ff *= -1) {
		f[m][i] = (LL)f[m][i] * pw[n - i] % MOD;
		ans = (ans + (LL)ff * C[i][K] * f[m][i]) % MOD;
	}
	for (int i = 1; i <= m; i++) {
		ans = (LL)ans * inv[a[i]] % MOD;
	}
	printf("%d\n", (ans + MOD) % MOD);
	return 0;
}

【BZOJ 3884】上帝与集合的正确用法

相关链接

题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3884
官方题解:http://blog.csdn.net/popoqqq/article/details/43951401

解题报告

根据欧拉定理有:$a^x \equiv a^{x \% \varphi (p) + \varphi (p)} \mod p$
设$f(p)=2^{2^{2 \cdots }} \mod p$
那么有$f(p) = 2^{f(\varphi(p)) + \varphi(p)} \mod p$

如果$p$是偶数,则$\varphi(p) \le \frac{p}{2}$
如果$p$是奇数,那么$\varphi(p)$一定是偶数
也就是说每进行两次$\varphi$操作,$p$至少除$2$
所以只会递归进行$\log p$次
总时间复杂度:$O(T\sqrt{p} \log p)$

Code

#include<bits/stdc++.h>
#define LL long long
using namespace std;

inline int read() {
	char c = getchar();
	int ret = 0, f = 1;
	while (c < '0' || c > '9') {
		f = c == '-'? -1: 1;
		c = getchar();
	}
	while ('0' <= c && c <= '9') {
		ret = ret * 10 + c - '0';
		c = getchar();
	}
	return ret * f;
}

inline int get_phi(int x) {
	int ret = x;
	for (int i = 2; i * i <= x; i++) {
		if (x % i == 0) {
			ret = ret / i * (i - 1);
			while (x % i == 0) {
				x /= i;
			}
		}
	}
	return x == 1? ret: ret / x * (x - 1);
}

inline int Pow(int w, int t, int MOD) {
	int ret = 1;
	for (; t; t >>= 1, w = (LL)w * w % MOD) {
		if (t & 1) {
			ret = (LL)ret * w % MOD;
		}
	}
	return ret;
}

inline int f(int p) {
	if (p == 1) {
		return 0;
	} else {
		int phi = get_phi(p);
		return Pow(2, f(phi) + phi , p);
	}
}

int main() {
	for (int i = read(); i; --i) {
		printf("%d\n", f(read())); 
	}
	return 0;
}

【日常小测】异或与区间加

相关链接

题目传送门:http://oi.cyo.ng/wp-content/uploads/2017/06/claris_contest_4_day2-statements.pdf
官方题解:http://oi.cyo.ng/wp-content/uploads/2017/06/claris_contest_4_day2-solutions.pdf

解题报告

这题又是一道多算法互补的题目
通过分类处理使复杂度达到$O((n+m)\sqrt{n})$
具体来讲是将以下两个算法结合:

1. 枚举右端点的值,若左端点的合法位置超过$\sqrt{n}$个

考虑每一个左右端点应该加减多少,使用前缀和技巧将复杂度优化到$O(n + m)$
具体细节不想写了,有点麻烦_(:з」∠)_
然后因为合法位置超过了$\sqrt{n}$个,所以这种情况至多出现$\sqrt{n}$个,复杂度符合要求

2. 其他情况

因为左端点不超过$\sqrt{n}$个,所以可以排序之后依次处理
使用分块来维护左端点的值,单次修改是$\sqrt{n}$的,单次查询是$O(1)$的

Code

#include<bits/stdc++.h>
#define LL long long
#define UI unsigned int
using namespace std;

const int N = 150009;
const int MOD = 1073741824;
const int blk_sz = 800;

int n, m, k, a[N];
UI a1[N], ans[N], blk_tag[N], tag[N];
vector<int> num, pos_list[N];
vector<pair<int, int> > left_list[N], right_list[N];
struct Query{
	int l, r, w;
	inline bool operator < (const Query &QQQ) const {
		return r > QQQ.r;
	} 
}q[N];

inline int read() {
	char c = getchar();
	int ret = 0, f = 1;
	while (c < '0' || c > '9') {
		f = c == '-'? -1: 1;
		c = getchar();
	}
	while ('0' <= c && c <= '9') {
		ret = ret * 10 + c - '0';
		c = getchar();
	}
	return ret * f;
}

inline int find(int x) {
	int l = 0, r = num.size() - 1, mid;
	while (l <= r) {
		mid = l + r >> 1;
		if (num[mid] == x) {
			return mid;
		} else if (num[mid] < x) {
			l = mid + 1;
		} else {
			r = mid - 1;
		}
	}
	return -1;
}

inline void solve(int A, int B) {
	static UI a2[N], cur;
	memset(a2, 0, sizeof(a2));
	for (int i = 1; i <= n; i++) {
		a2[i] = a2[i - 1] + (a[i] == num[B]);
	}
	cur = 0;
	for (int i = n; i; i--) {
		if (a[i] == num[B]) {
			cur += a1[i];
		}
		if (a[i - 1] == num[A]) {
			ans[i] += cur;
		}
		for (int j = 0; j < (int)left_list[i].size(); ++j) {
			cur -= (UI)left_list[i][j].second * (a2[left_list[i][j].first] - a2[i - 1]);
		}
	}
	memset(a2, 0, sizeof(a2));
	for (int i = 1; i <= n; ++i) {
		a2[i] = a2[i - 1] + (a[i - 1] == num[A]);
	}
	cur = 0;
	for (int i = 1; i <= n; i++) {
		if (a[i - 1] == num[A]) {
			cur -= a1[i];
		}
		if (a[i] == num[B]) {
			ans[i + 1] += cur;
		}
		for (int j = 0; j < (int)right_list[i].size(); ++j) {
			cur += (UI)right_list[i][j].second * (a2[i] - a2[right_list[i][j].first - 1]);
		}
	}
}

int main() {
	freopen("xor.in", "r", stdin);
	freopen("xor.out", "w", stdout);
	n = read(); m = read(); k = read();
	num.push_back(0);
	for (int i = 1; i <= n; ++i) {
		a[i] = a[i - 1] ^ read();
		num.push_back(a[i]);
	}
	sort(num.begin(), num.end());
	num.resize(unique(num.begin(), num.end()) - num.begin());
	for (int i = 0; i <= n; i++) {
		int pp = find(a[i]);
		pos_list[pp].push_back(i);
	}
	for (int i = 1, l, r, w; i <= m; ++i) {
		l = q[i].l = read();
		r = q[i].r = read();
		w = q[i].w = read();	
		left_list[l].push_back(make_pair(r, w));
		right_list[r].push_back(make_pair(l, w));
		a1[l] += w; 
		a1[r + 1] -= w;
	}
	sort(q + 1, q + 1 + m);
	for (int i = 1; i <= n; ++i) {
		a1[i] += a1[i - 1];
	}
	for (int i = 0; i < (int)num.size(); i++) {
		int r = i, l = find(num[i] ^ k);
		if (l != -1 && (int)pos_list[l].size() > blk_sz) {
			solve(l, r);
		}
	}
	for (int r = n, cur = 0; r; r--) {
		while (cur < m && q[cur + 1].r >= r) {
			++cur;
			for (int i = q[cur].l, lim = min(q[cur].r, (q[cur].l / blk_sz + 1) * blk_sz - 1); i <= lim; ++i) {
				tag[i] += q[cur].w;
			}
			for (int i = q[cur].l / blk_sz + 1, lim = q[cur].r / blk_sz - 1; i <= lim; ++i) {
				blk_tag[i] += q[cur].w;
			}
			for (int i = max(q[cur].r / blk_sz, q[cur].l / blk_sz + 1) * blk_sz; i <= q[cur].r; ++i) {
				tag[i] += q[cur].w;
			}
		}
		int t = find(a[r] ^ k);
		if (t != -1 && (int)pos_list[t].size() <= blk_sz) {
			for (int tt = 0; tt < (int)pos_list[t].size(); ++tt) {
				int l = pos_list[t][tt] + 1;
				if (l <= r) {
					ans[l] += tag[l] + blk_tag[l / blk_sz];
					ans[r + 1] -= tag[l] + blk_tag[l / blk_sz];
				} else {
					break;
				}
			}
		}
	}
	for (int i = 1; i <= n; i++) {
		ans[i] += ans[i - 1];
		printf("%d ", ans[i] % MOD);
	}
	return 0;
}

【日常小测】最长路径

相关链接

题目传送门:http://oi.cyo.ng/wp-content/uploads/2017/06/claris_contest_4_day2-statements.pdf
官方题解:http://oi.cyo.ng/wp-content/uploads/2017/06/claris_contest_4_day2-solutions.pdf

解题报告

首先我们要熟悉竞赛图的两个结论:

  1. 任意一个竞赛图一定存在哈密尔顿路径
  2. 一个竞赛图存在哈密尔顿回路当且仅当这个竞赛图强连通

现在考虑把强连通分量缩成一个点,并把新点按照哈密尔顿路径排列
那么$1$号点可以到达的点数就是$1$号点所在的$SCC$的点数加上$1$号点可以到达的其他$SCC$点数和

设$f_i$为$i$个点带标号竞赛图的个数
设$g_i$为$i$个点带标号强连通竞赛图的个数
有$f_i = 2^{\frac{n(n-1)}{2}}$
又有$g_i = f_i – \sum\limits_{j = 1}^{i – 1}{{{i}\choose{j}} g_j f_{i – j}}$

于是我们枚举$1$号点所在$SCC$的点数$i$和$1$号点可到达的其他$SCC$的点数和$j$
$ans_{x} = \sum\limits_{i = 1}^{x}{{{n – 1}\choose{i – 1}} g_i {{n – i}\choose{x – i}} f_{x – i} f_{n – x}}$

Code

#include<bits/stdc++.h>
#define LL long long
using namespace std;

const int N = 2009;

int n, MOD, f[N], g[N], pw[N * N], C[N][N];

inline int read() {
	char c = getchar();
	int ret = 0, f = 1;
	while (c < '0' || c > '9') {
		f = c == '-'? -1: 1;
		c = getchar();
	}
	while ('0' <= c && c <= '9') {
		ret = ret * 10 + c - '0';
		c = getchar();
	}
	return ret * f;
}

int main() {
	freopen("path.in", "r", stdin);
	freopen("path.out", "w", stdout);
	n = read(); MOD = read();
	pw[0] = 1;
	for (int i = 1; i < n * n; i++) {
		pw[i] = (pw[i - 1] << 1) % MOD;
	}
	C[0][0] = 1;
	for (int i = 1; i <= n; ++i) {
		C[i][0] = 1;
		for (int j = 1; j <= n; j++) {
			C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % MOD;
		}
	}
	f[0] = g[0] = 1;
	for (int i = 1; i <= n; i++) {
		f[i] = g[i] = pw[i * (i - 1) >> 1];
		for (int j = 1; j < i; j++) {
			g[i] = (g[i] - (LL)C[i][j] * g[j] % MOD * f[i - j]) % MOD;
		}
	}
	for (int x = 1; x <= n; x++) {
		int ans = 0;
		for (int i = 1; i <= x; i++) {
			ans = (ans + (LL)C[n - 1][i - 1] * g[i] % MOD * C[n - i][x - i] % MOD * f[x - i] % MOD * f[n - x]) % MOD;
		}
		printf("%d\n", ans > 0? ans: ans + MOD);
	}
	return 0;
}

【日常小测】友好城市

相关链接

题目传送门:http://oi.cyo.ng/wp-content/uploads/2017/06/claris_contest_4_day2-statements.pdf
官方题解:http://oi.cyo.ng/wp-content/uploads/2017/06/claris_contest_4_day2-solutions.pdf

解题报告

这题的前置知识是把求$SCC$优化到$O(\frac{n^2}{32})$
具体来说,就是使用$bitset$配合$Kosaraju$算法

有了这个技能以后,我们配合$ST$表来实现提取一个区间的边的操作
这样的话,总的时间复杂度是:$O(\frac{(\sqrt{m} \log m + q) n^2}{32}+q \sqrt{m})$

然后我懒,没有用$ST$表,用的莫队,时间复杂度是$O(\frac{(m + q) n^2}{32}+q \sqrt{m})$
调一调块大小,勉勉强强卡过去了

Code

#include<bits/stdc++.h>
#define LL long long
#define UI unsigned int 
#define lowbit(x) ((x)&-(x))
using namespace std;

const int N = 159;
const int M = 300009;
const int QQ = 50009;
const int BlockSize = 1200;
const UI ALL = (1ll << 32) - 1;

int n, m, q, U[M], V[M], ans[QQ]; 
struct Query{
	int l, r, blk, id;
	inline bool operator < (const Query &Q) const {
		return blk < Q.blk || (blk == Q.blk && r < Q.r);
	}
}qy[QQ];
struct Bitset{
	UI v[5];
	inline void flip(int x) {
		v[x >> 5] ^= 1 << (x & 31);
	}
	inline void set(int x) {
		v[x >> 5] |= 1 << (x & 31);
	}
	inline void reset() {
		memset(v, 0, sizeof(v));
	}
	inline bool operator [](int x) {
		return v[x >> 5] & (1 << (x & 31));
	}
}g[N], rg[N], PreG[M / BlockSize + 9][N], PreRG[M / BlockSize + 9][N];

inline int read() {
	char c = getchar();
	int ret = 0, f = 1;
	while (c < '0' || c > '9') {
		f = c == '-'? -1: 1;
		c = getchar();
	}
	while ('0' <= c && c <= '9') {
		ret = ret * 10 + c - '0';
		c = getchar();
	}
	return ret * f;
}

inline void AddEdge(int u, int v, Bitset *a1, Bitset *a2) {
 	a1[u].set(v);
 	a2[v].set(u);
}

class Kosaraju{
	vector<int> que;
	Bitset vis;
public:
	inline int solve() {
		vis.reset();
		que.clear();
		for (int i = 1; i <= n; ++i) {
			if (!vis[i]) {
				dfs0(i);
			}
		}
		vis.reset();
		int ret = 0;
		for (int j = n - 1; ~j; j--) {
			int i = que[j];
			if (!vis[i]) {
				int cnt = dfs1(i);
				ret += cnt * (cnt - 1) / 2;
			}
		}
		return ret;
	}
private:
	inline void dfs0(int w) {
		vis.flip(w);
		for (int i = 0; i < 5; i++) {
			for (UI j = g[w].v[i] & (ALL ^ vis.v[i]); j; j ^= lowbit(j)) {
				int t = (__builtin_ffs(j) - 1) | (i << 5);
				if (!vis[t]) {
					dfs0(t);
				}
			}
		}
		que.push_back(w);
	}
	inline int dfs1(int w) {
		vis.flip(w);
		int ret = 1;
		for (int i = 0; i < 5; i++) {
			for (UI j = rg[w].v[i] & (ALL ^ vis.v[i]); j; j ^= lowbit(j)) {
				int t = (__builtin_ffs(j) - 1) | (i << 5);
				if (!vis[t]) {
					ret += dfs1(t);
				}
			}
		}
		return ret;
	}
}scc;

int main() {
	freopen("friend.in", "r", stdin);
	freopen("friend.out", "w", stdout);
	n = read(); m = read(); q = read();
	for (int i = 1; i <= m; i++) {
		U[i] = read();
		V[i] = read();
		AddEdge(U[i], V[i], PreG[i / BlockSize], PreRG[i / BlockSize]);
	}
	for (int i = 1; i <= q; i++) {
		qy[i].l = read(); 
		qy[i].r = read();
		qy[i].blk = qy[i].l / BlockSize;
		qy[i].id = i;
	}
	sort(qy + 1, qy + 1 + q);
	Bitset CurG[N], CurRG[N];
	for (int i = 1, L = 1, R = 0; i <= q; i++) {
		if (qy[i].blk != qy[i - 1].blk || i == 1) {
			L = qy[i].blk + 1;
			R = L - 1;	
			for (int j = 1; j <= n; j++) {
				CurG[j].reset();
				CurRG[j].reset();
			}
		}
		if (qy[i].r / BlockSize - 1 > R) {
			for (int j = R + 1, lim = qy[i].r / BlockSize - 1; j <= lim; j++) {
				for (int k = 1; k <= n; k++) {
					for (int h = 0; h < 5; h++) {
						CurG[k].v[h] ^= PreG[j][k].v[h];
						CurRG[k].v[h] ^= PreRG[j][k].v[h];
					}
				}
			}
			R = qy[i].r / BlockSize - 1;
		}
		if (L <= R) {
			for (int i = 1; i <= n; i++) {
				g[i] = CurG[i];
				rg[i] = CurRG[i];
			}
			for (int l = qy[i].l; l < L * BlockSize; l++) {
				AddEdge(U[l], V[l], g, rg);
			}
			for (int r = (R + 1) * BlockSize; r <= qy[i].r; r++) {
				AddEdge(U[r], V[r], g, rg);
			}
			ans[qy[i].id] = scc.solve();
		} else {
			for (int i = 1; i <= n; i++) {
				g[i].reset();
				rg[i].reset();
			}
			for (int j = qy[i].l; j <= qy[i].r; ++j) {
				AddEdge(U[j], V[j], g, rg);
			}
			ans[qy[i].id] = scc.solve();
		}
	}
	for (int i = 1; i <= q; i++) {
		printf("%d\n", ans[i]);
	}
	return 0;
}

【BZOJ 4906】[BeiJing2017] 喷式水战改

相关链接

题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4906

解题报告

这题我们看一眼就知道可以用平衡树来维护序列
至于收益问题,我们发现区间信息可以合并
只需要记录一个区间左右两个端点的状态即可
于是搞一个$Splay$然后带$4^3$的常数来合并区间信息即可
总时间复杂度:$O(4^3n \log n)$

Code

这个代码win下没问题
ubuntu 16.04下也没有问题
UOJ的自定义测试也不会RE

然而一交到B站上就RE
我也很绝望啊,弃疗了_(:з」∠)_
反正北京省选测评也是在win下,就当a了吧

#include<bits/stdc++.h>
#define LL long long
using namespace std;

const int SGZ = 4;
const int N = 400000;

namespace Splay{
	int tot;
	struct Node *null, *root;
	struct Node{
		Node *ch[2], *fa;
		LL len, plen, adv[SGZ], sum[SGZ][SGZ];
		inline Node() {
		}
		inline Node(LL l, LL a, LL b, LL c) {
			memset(sum, 0, sizeof(sum));
			sum[0][0] = adv[0] = sum[3][3] = adv[3] = l * a;
			sum[1][1] = adv[1] = l * b;
			sum[2][2] = adv[2] = l * c;
			len = plen = l;
			ch[0] = ch[1] = fa = null;
			for (int i = 0; i < SGZ; i++) {
				for (int j = i; j < SGZ; j++) {
					for (int k = i - 1; ~k; k--) {
						sum[k][j] = max(sum[k][j], sum[i][j]);
					}
					for (int k = j + 1; k < SGZ; k++) {
						sum[i][k] = max(sum[i][k], sum[i][j]);
					}
				}
			}
		}
		inline void relax(LL &a, LL b) {
			a = b > a? b: a;
		}
		inline void maintain() {
			memset(sum, 0, sizeof(sum));
			//merge left son
			if (ch[0] != null) {
				for (int i = 0; i < SGZ; i++) {
					for (int k = SGZ - 1; k >= i; k--) {
						for (int j = k; j >= i; j--) {
							relax(sum[i][k], ch[0]->sum[i][j] + adv[k]);
						}
					}
				}
				plen = len + ch[0]->plen;
			} else {
				for (int i = 0; i < SGZ; i++) {
					sum[i][i] = adv[i];
				}
				plen = len;
			}
			//merge right son
			if (ch[1] != null) {
				for (int l = 0; l < SGZ; l++) {
					for (int i = SGZ - 1; i >= l; i--) {
						for (int r = SGZ - 1; r >= i; r--) {
							relax(sum[l][r], sum[l][i] + ch[1]->sum[i][r]);
						}
					}
				}
				plen += ch[1]->plen;
			} 
			for (int i = 0; i < SGZ; i++) {
				for (int j = i; j < SGZ; j++) {
					for (int k = i - 1; ~k; k--) {
						relax(sum[k][j], sum[i][j]);
					}
					for (int k = j + 1; k < SGZ; k++) {
						relax(sum[i][k], sum[i][j]);
					}
				}
			}
		}
		inline void rotate() {
			int t = fa->ch[1] == this;
			if (fa->fa != null) {
				int tt = fa->fa->ch[1] == fa;
				fa->fa->ch[tt] = this;
			}
			fa->ch[t] = ch[t^1]; ch[t^1]->fa = fa;
			ch[t^1] = fa; fa = ch[t^1]->fa;
			ch[t^1]->fa = this;
			ch[t^1]->maintain();
			maintain();
		}
		inline void splay(Node *ed) {
			while (fa != ed) {
				if (fa->fa != ed) {
					if ((fa->ch[0] == this) ^ (fa->fa->ch[0] == fa)) {
						rotate();
						rotate();
					} else {
						fa->rotate();
						rotate();
					}
				} else {
					rotate();
				} 
			}
 		}
 		inline LL ans() {
			LL ret = 0;
			for (int i = 0; i < SGZ; i++) {
				for (int j = i; j < SGZ; j++) {
					ret = max(ret, sum[i][j]);
				}
			} 
			return ret;
		}
		Node *find(LL pp) {
			if (ch[0]->plen >= pp) {
				return ch[0]->find(pp);
			} else if (ch[0]->plen + len >= pp) {
				return this;
			} else {
				return ch[1]->find(pp - ch[0]->plen - len);
			}
		}
		Node *min() {
			if (ch[0] != null) {
				return ch[0]->min();
			} else {
				return this;
			}
		}
	}p[N];
	inline void insert(LL pp, int a ,int b, int c, LL l) {
		p[++tot] = Node(l, a, b, c);
		Node *nw = p + tot;
		if (root != null) {
			Node *pos = root->find(pp);
			pos->splay(null); root = pos;
			int nlen = root->ch[0]->plen + root->len - pp, LEN = root->len, ls = root->ch[0] - p, rs = root->ch[1] - p;
			p[++tot] = Node(nlen, LEN? root->adv[0] / LEN: 0, LEN? root->adv[1] / LEN: 0, LEN? root->adv[2] / LEN: 0);
			*root = Node(LEN - nlen, LEN? root->adv[0] / LEN: 0, LEN? root->adv[1] / LEN: 0, LEN? root->adv[2] / LEN: 0);
			root->ch[0] = p + ls, root->ch[1] = p + rs;
			if (root->ch[1] != null) {
				root->ch[1]->min()->splay(root);
				p[tot].fa = root->ch[1];
				root->ch[1]->ch[0] = p + tot;
				nw->fa = p + tot;
				p[tot].ch[0] = nw;
				p[tot].maintain();
				root->ch[1]->maintain();
				root->maintain();
			} else {
				p[tot].fa = root;
				root->ch[1] = p + tot;
				nw->fa = p + tot;
				p[tot].ch[0] = nw;
				p[tot].maintain();
				root->maintain();
			}			
		} else {
			root = nw;
		}
	}
	inline LL query() {
		return root->ans();
	}
	inline void init() {
		null = root = p;
	}
};

int main() {
	Splay::init();
	int n; scanf("%d", &n);
	for (LL i = 1, LastAns = 0; i <= n; ++i) {
		LL pos, len, tmp, a, b, c;
		cin>>pos>>a>>b>>c>>len;
		Splay::insert(pos, a, b, c, len);
		tmp = Splay::query();
		printf("%lld\n", tmp - LastAns);
		LastAns = tmp;
	}
	return 0;
}

【Codeforces 802L】Send the Fool Further! (hard)

相关链接

题目传送门:http://codeforces.com/contest/802/problem/L
官方题解:http://dj3500.webfactional.com/helvetic-coding-contest-2017-editorial.pdf

解题报告

这题告诉我们,这类题可以高斯消元做
裸做是$O(n^3)$的,非常不科学
这题我们发掘性质,如果从叶子开始一层一层往上消,高斯消元那一块可以做到$O(n)$
然后再算上逆元的话,总的时间复杂度:$O(n \log n)$

Code

#include<bits/stdc++.h>
#define LL long long
using namespace std;

const int N = 100009;
const int M = 200009;
const int MOD = 1000000007;

int n, head[N], nxt[M], to[M], cost[M];
int a[N], b[N], fa[N], d[N];

inline int read() {
	char c=getchar(); int f=1,ret=0;
	while (c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
	while (c<='9'&&c>='0') {ret=ret*10+c-'0';c=getchar();}
	return ret * f;
}

inline void AddEdge(int u, int v, int c) {
	static int E = 1; 
	d[u]++; d[v]++;
	cost[E + 1] = cost[E + 2] = c;
	to[++E] = v; nxt[E] = head[u]; head[u] = E;
	to[++E] = u; nxt[E] = head[v]; head[v] = E;
}

inline int REV(int x) {
	int ret = 1, t = MOD - 2;
	for (; t; x = (LL)x * x % MOD, t >>= 1) {
		if (t & 1) {
			ret = (LL)ret * x % MOD;
		}
	}
	return ret;
}

void solve(int w, int f) {
	if (d[w] > 1) {
		a[w] = -1;
		for (int i = head[w]; i; i = nxt[i]) {
			b[w] = (b[w] + (LL)cost[i] * REV(d[w])) % MOD;
			if (to[i] != f) {
				solve(to[i], w);
			}
		}
		if (w != f) {
			b[f] = (b[f] - (LL)b[w] * REV((LL)a[w] * d[f] % MOD)) % MOD;
			a[f] = (a[f] - REV((LL)d[w] * d[f] % MOD) * (LL)REV(a[w])) % MOD;
		}
	}
}

int main() {
#ifdef DBG
	freopen("11input.in", "r", stdin);
#endif
	n = read();
	for (int i = 1; i < n; ++i) {
		int u = read(), v = read();
		AddEdge(u + 1, v + 1, read());
	}
	solve(1, 1);
	int ans = (LL)b[1] * REV(MOD - a[1]) % MOD;
	ans = (ans + MOD) % MOD;
	cout<<ans<<endl;
	return 0;
}

【Codeforces 802C】Heidi and Library (hard)

相关链接

题目传送门:http://codeforces.com/contest/802/problem/C
官方题解:http://dj3500.webfactional.com/helvetic-coding-contest-2017-editorial.pdf
消圈定理:https://blog.sengxian.com/algorithms/clearcircle

解题报告

被这题强制解锁了两个新姿势qwq

  1. 上下界最小费用流:
    直接按照上下界网络流一样建图,然后正常跑费用流
  2. 带负环的费用流
    应用消圈定理,强行将负环满流

然后考完之后发现脑残了
换一种建图方法就没有负环了_(:з」∠)_

Code

#include<bits/stdc++.h>
#define LL long long
using namespace std;

const int N = 5000000;
const int M = 200;
const int INF = 1e9;

int n,k,S,T,tot,SS,TT,ans,a[M],np[M],cc[M];
int head[N],nxt[N],to[N],flow[N],cost[N]; 

inline int read() {
	char c=getchar(); int f=1,ret=0;
	while (c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
	while (c<='9'&&c>='0') {ret=ret*10+c-'0';c=getchar();}
	return ret * f;
}

inline int AddEdge(int u, int v, int c, int f) {
	static int E = 1;
    to[++E] = v; nxt[E] = head[u]; head[u] = E; flow[E] = f; cost[E] = c;
    to[++E] = u; nxt[E] = head[v]; head[v] = E; flow[E] = 0; cost[E] = -c;
}

class Minimum_Cost_Flow{
    int dis[N],sur[N],inq[N],vis[N]; 
    queue<int> que; 
    public:
        inline void MaxFlow() {
        	while (clearCircle()); 
            for (int ff; ff = INF, SPFA();) {
            	for (int w = TT; w != SS; w = to[sur[w]^1]) {
					ff = min(ff, flow[sur[w]]);
				}
                for (int w = TT; w != SS; w = to[sur[w]^1]) {
					flow[sur[w]] -= ff;
					flow[sur[w]^1] += ff;
				}
				ans += dis[TT] * ff;
            }
        }
    private:
        bool SPFA() {
            memset(dis,60,sizeof(dis));
            que.push(SS); dis[SS] = 0;
               
            while (!que.empty()) {
                int w = que.front(); que.pop(); inq[w] = 0;
                for (int i=head[w];i;i=nxt[i]) {
                    if (dis[to[i]] > dis[w] + cost[i] && flow[i]) {
                        dis[to[i]] = dis[w] + cost[i];
                        sur[to[i]] = i;
                        if (!inq[to[i]]) {
							inq[to[i]] = 1;
							que.push(to[i]);
						}
                    }
                }
            }
            return dis[TT] < INF;
        }
        bool clearCircle() {
        	memset(dis, 0, sizeof(dis));
        	memset(vis, 0, sizeof(vis));
			for (int i = 1; i <= tot; ++i) { 
   	    		if (!vis[i] && DFS(i)) {
					return 1;   
				}
			}
			return 0;
    	}
    	bool DFS(int w) {
    		vis[w] = 1;
    		if (inq[w]) {
    			int cur = w;
    			do {
					flow[sur[cur]]--;
					flow[sur[cur]^1]++;
					ans += cost[sur[cur]];
					cur = to[sur[cur]];
				} while (cur != w);
				return 1;
			} else {
    			inq[w] = 1;
				for (int i = head[w]; i; i = nxt[i]) {
					if (flow[i] && dis[to[i]] > dis[w] + cost[i]) {
						dis[to[i]] = dis[w] + cost[i];
						sur[w] = i;
						if (DFS(to[i])) {
							inq[w] = 0;
							return 1;
						}
					}
				}
				inq[w] = 0;
				return 0;
			}
			
		}
}MCMF;

int main() {
#ifdef DBG
	freopen("11input.in", "r", stdin);
#endif 
	n = read(); k = read();
	S = tot = n + 4; T = n + 1;
	SS = n + 2; TT = n + 3; 
	AddEdge(T, S, 0, k); 
	AddEdge(S, 1, 0, INF);
	for (int i = 1; i <= n; i++) {
		np[i] = ++tot;
		AddEdge(np[i], i + 1, 0, INF);
		AddEdge(i, np[i], 0, INF);
		AddEdge(i, TT, 0, 1);
		AddEdge(SS, np[i], 0, 1);
		a[i] = read();
	}
	for (int i = 1; i <= n; i++) {
		cc[i] = read();
	}
	for (int i = 1; i <= n; i++) {
		ans += cc[a[i]];
		for (int j = i + 1; j <= n; j++) {
			if (a[i] == a[j]) {
				AddEdge(np[i], j, -cc[a[i]], 1);
				break;
			} 
		}
	}
	MCMF.MaxFlow();
	cout<<ans<<endl; 
	return 0;
}